QQ免费月抛群_全国品茶修车资源交流入口_全国51茶楼信息网_微信二维码叫小妹150

加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

科学家破解颗石藻光系统复合物高效利用光能的分子机制

2025-09-12 植物研究所
【字体:

语音播报

颗石藻是海洋中的主要浮游植物之一,在海洋碳沉积和全球碳循环中扮演重要角色??攀迥芄皇视K煌疃鹊亩啾涔饣肪?,高效的光合自养生长可助其快速繁殖。但颗石藻光系统复合物高效捕获和利用光能的微观机理并不清楚,进化机制也未见报道。

近日,中国科学院植物研究所首次在原子层面揭示了颗石藻通过扩展和优化其光系统结构来适应海洋光环境的独特策略,是光合生物适应进化研究中的一个重大发现。

研究团队首次纯化并解析了来自赫氏艾米里颗石藻的光系统I-岩藻黄素叶绿素a/c结合蛋白(PSI-FCPI)超级复合物三维结构。

颗石藻PSI-FCPI超级复合物是一个巨大光合膜蛋白机器,由51个蛋白亚基和819个色素分子组成,分子量高达1.66兆道尔顿,远超已报道的真核生物PSI捕光天线复合物。它的捕光截面是典型陆地植物(豌豆)PSI超级复合物的4倍-5倍。

飞秒瞬态吸收光谱结果表明,颗石藻PSI-FCPI捕获光能的量子转化效率超过95%,与陆地植物PSI超级复合物效率相当,说明颗石藻PSI-FCPI具备特殊的蛋白组装和能量传递特征。

研究发现,颗石藻的PSI核心周围环绕着38个FCPI捕光天线,并以??榛姆绞脚帕谐?个放射状排布的捕光天线条带。这种“旋涡围绕”PSI核心的巨型捕光天线依靠大量新型捕光天线的精密装配,极大地扩展了捕光面积。

研究团队还鉴定到丰富的叶绿素c和岩藻黄素类型的类胡萝卜素,这些色素在新发现的捕光天线中含量极高,使其能有效地吸收深水区波长在460纳米-540纳米间的蓝绿光和绿光。

大量叶绿素c与叶绿素a形成了紧密的能量耦联并消除了能量陷阱,构成了平坦畅通的能量传递网络,这可能是其保持超高量子转化效率的关键。

颗石藻光系统复合物的结构解析和机理研究,为理解光合生物高效的能量转化机制提供了新的结构模型。未来,以此研究为基础,有望设计新型光合作用蛋白,并进一步指导人工模拟和开发高碳汇生物资源。

9月12日,相关研究成果作为封面论文发表在《科学》(Science)上。

论文链接

颗石藻光系统I-捕光天线超大复合物结构及其能量转化效率

打印 责任编辑:宋同舟

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)