QQ免费月抛群_全国品茶修车资源交流入口_全国51茶楼信息网_微信二维码叫小妹150

加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

氮肥驱动小麦旱后恢复的分子机制获揭示

2025-09-10 遗传与发育生物学研究所
【字体:

语音播报

干旱是制约作物产量的重要环境胁迫因素。传统研究聚焦于作物抗旱性,却对干旱胁迫后恢复过程关注不足。作物在干旱缓解后的恢复能力,对保障粮食安全至关重要。氮肥作为优化植物生长和抗逆性的核心营养元素,其在恢复阶段的作用机制尚未明晰。

近期,中国科学院遗传与发育生物学研究所肖军研究组,联合山东大学白明义团队,揭示了硝酸盐(氮肥)驱动小麦干旱缓解后恢复的分子机制。

干旱触发脱落酸(ABA)大量积累,启动气孔关闭等“生存模式”。但是,高浓度ABA抑制生长基因表达,阻碍作物在复水后向“生长模式”切换,暗示ABA信号适时“关闭”对恢复生长较为重要。研究发现,硝酸盐在干旱后复水时发挥关键作用,通过抑制ABA信号核心激酶TaSnRK2.10-4A的活性,解除其对硝酸盐信号转录因子TaNLP7-3A的磷酸化抑制,从而激活下游生长基因表达。这一发现破解了植物“抗逆与生长”的拮抗难题,通过旱后复水时精准补充硝酸盐,可协同提升作物抗逆性与生长效率,降低农业生产成本。

进一步,研究人员在自然群体中鉴定到TaSnRK2.10-4A基因启动子区的关键自然变异:携带单倍型Hap-I的品种对氮响应敏感,旱后加氮复水恢复能力更强,适配灌溉条件良好区域;Hap-II品种因ABA诱导表达水平高而抗旱性突出,适合干旱频发地区,同时该变异为区域化精准育种提供了分子标记。

上述研究阐明了氮素驱动小麦干旱后恢复的分子机制,深化了科研人员对植物环境适应智慧的认知,为设计“抗逆-高效”协同提升的作物新品种提供了关键靶点,有望在保障干旱胁迫下粮食稳产的同时,推动资源节约型农业发展。

9月5日,相关研究成果发表在《自然-植物》(Nature Plants)上。研究工作得到国家自然科学基金等的支持。

论文链接

硝酸盐通过TaSnRK2.10-TaNLP7途径促进小麦干旱后恢复的工作模型

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)